skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Su"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The polar cap arc at 1500 MLT (15MLT‐PCA) has been considered as an auroral signature of the cusp's duskside boundary and been speculated to be caused by lobe reconnection. However, no observational evidence has been provided to support this speculation. Here we report a 15MLT‐PCA event occurred on 29 November 2017 using multi‐instrument observations. During the DMSP observed the 15MLT‐PCA, Cluster, with its footprints at the root of the 15MLT‐PCA, identified two FTEs in the southern hemisphere's lobe region, accompanied by an increase in electron and ion energy from hundreds of eVs to several keVs. AMPERE observed an increase in upward field‐aligned currents associated with the 15MLT‐PCA. SuperDARN observed a single cell convection with an enhancement of sunward plasma flow near the root of 15MLT‐PCA. We suggest that these observations provide the in‐situ observational evidence that the 15MLT‐PCA is generated by a lobe reconnection at the cusp's duskside boundary. 
    more » « less
    Free, publicly-accessible full text available November 28, 2025
  2. Abstract This study investigates the comprehensive magnetospheric and ionospheric phenomena during a substorm event on 14 December 2013. The methodology involves analyzing data from satellites located within the plasmasphere at dusk‐side of the Earth, as well as data from ionospheric satellites mapped in the subauroral region. Magnetospheric data were analyzed to identify key features during the substorm event. Proton injection into the ring current, presence of proton and helium band electromagnetic ion cyclotron (EMIC) waves with different polarization characteristics, and harmonic structures in these EMIC waves were identified. These harmonic structures coincided with the appearance of magnetosonic waves characterized by rising tone structures and heating of low‐energy protons (<100 eV). Ionospheric satellites (DMSP F17 and POES 15) recorded enhanced proton precipitation contributing to the intensification of subauroral proton arcs. The analysis revealed that these enhanced proton fluxes were associated with variations in field‐aligned currents (FACs) and drove dynamics within the Sub‐Auroral Polarization Streams (SAPS). By combining and analyzing the magnetospheric and ionospheric data sets, this study provides a comprehensive understanding of magnetosphere‐ionosphere coupling during substorms, particularly on the duskside. The complex interdependence and causal relationships among EMIC waves, proton precipitation, subauroral proton arcs, FAC variations, and SAPS dynamics were highlighted. 
    more » « less